

DECLARATION OF CONFORMITY, UPM PLYWOOD No. UPM001CPR

Unique identification code of the product-type:
 Structural spruce plywood, uncoated or coated, 9–50 mm

2. Intended uses:

For internal use as a structural component in dry conditions, EN 636-1 For protected external use as a structural component in humid conditions, EN 636-2 For external use as a structural component with coating and edge sealing, EN 636-3

3. Manufacturer:

WISA®
UPM Plywood Oy
P.O. Box 203
FI-15141 Lahti, Finland
www.wisaplywood.com

4. Authorized presentative
UPM Wood Material (UK) Limited
Station House Stamford New Road,
Altrincham
WA14 1EP Cheshire
United Kingdom

5. System of AVCP: AVCP system 2+

6a. Harmonised standard:

EN 13986:2004 + A1:2015

Notified body:

CATG Ltd No. 1245 has performed the initial inspection of the manufacturing plant and a factory production control and continuous surveillance, assessment and evaluation of factory production control and issued the certificate of conformity of the factory production control 1245-CPR-5003.

7. Declared performance:

Essential characteristics	Performance	Harmonised standard		
Point load strength and stiffness	NPD			
Racking resistance	Calculation according to EN 1995-1-1			
Impact resistance	NPD			
Water veneur permeability u	Wet 66, dry 190 (uncoated)			
Water vapour permeability μ	Mean density 460kg/m ³			
Release of formaldehyde	E1			
Content of pentachlorophenol (PCP)	≤ 5 ppm			
Airborne sound insulation	NPD	EN 13986:2004+A1:2015		
Sound absorption α	0,10/0,30	- - -		
Thermal conductivity λ	0,13 W/mK			
Embedment strength	Calculation according to EN 1995-1-1			
Air permeability	NPD			
Bonding quality (acc. to EN 314-2)	Class 3			
Dialogical dynability	Use class 2 (uncoated)			
Biological durability	Use class 3 (coated and edge sealed)			

Reaction to fire									
End use condition ⁽⁶⁾	Minimum thickness (mm)	Class ⁽⁷⁾ (excluding floorings)	Class ⁽⁸⁾ (floorings)						
Without an air gap behind the wood-based panel (1). (2), (5)	9	D-s2, d0	D _{fl} -s1						
With a closed or an open air gap not more than 22 mm behind the wood-based panel (3), (5)	9	D-s2, d2	-						
With a closed air gap behind the wood-based panel (4), (5)	15	D-s2, d1	D _{fl} -s1						
With an open air gap behind the wood-based panel (4), (5)	18	D-s2, d0	D _{ff} -s1						

⁽¹⁾ Mounted without an air gap directly against class A1 or A2-s1, d0 products with minimum density 10kg/m3 or at least class D-s2, d2.
(2) A substrate of cellulose insulation material of at least class E may be included if mounted directly against the wood-based panel, but not for floorings.
(3) Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 products with minimum density 10 kg/m3.

⁽⁴⁾ Mounted with an air gap behind. The reverse face of the cavity shall be at least class D-s2, d2 products with minimum density 400 kg/m3. (5) Veneered, phenol- and melamine-faced panels are included for class excl. floorings.

⁽⁶⁾ A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m2 can be mounted in between the wood-based panel and a substrate if there are no air gaps in between.

(7) Class as provided for in Table 1 of the Annex to Decision 2000/147/EC.
(8) Class as provided for in Table 2 of the Annex to Decision 2000/147/EC.

Nominal thickness		9	12	15	18	21	24	27	30	40	50				
Number of plies		3	5	5	7	7	9	9	11	13	17				
Essential characteristics			Performance												
Characteristic bending strength N/mm²	<i>f</i> _m	28,7	22,8	23,0	20,4	18,9	19,4	19,3	18,7	16,8	15,6				
	<i>f</i> _{m_L}	3,8	11,4	11,2	13,0	14,3	13,1	13,8	13,3	14,9	15,9				
Characteristic compression strength N/mm²	f c∥	19,3	17,4	17,5	16,7	16,0	17,0	15,5	17,2	15,5	14,7				
	<i>f</i> c_ _	10,7	12,6	12,5	13,3	14,0	13,0	14,5	12,8	14,5	15,3				
Characteristic tension strength N/mm²	<i>f</i> t	11,6	10,5	10,5	10,0	9,6	10,2	9,3	10,3	9,3	8,8	15			
	<i>f</i> t_ _	6,4	7,5	7,5	8,0	8,4	7,8	8,7	7,7	8,7	9,2	1:20			
Mean MOE in bending N/mm²	E _m	10050	9123	9201	8170	7547	7751	7702	7479	6723	6227	Harmonised standard EN 13986:2004+A1:2015			
	E _{m_L}	539	2876	2799	3830	4453	4249	4298	4521	5277	5773	86:2			
Mean MOE in compression and tension N/mm²	E t,c∥	7733	6968	7013	6682	6408	6800	6182	6868	6211	5880	N 1398			
tension n/mm	<i>E</i> t,c_ _	4267	5032	4987	5318	5592	5200	5818	5132	5789	6120	rd E			
Char. panel shear	f _v	3,5	3,5		3,5						tanda				
N/mm²	f_{V_L}	3,5	3,	5				3,5				s pa			
Char. Planar	f r∥	1	1		1						monis				
shear N/mm²	f r_L	NPD	0,	6				0,8				Har			
Mean MOR in panel shear N/mm²	G _{v II}	350	350 350												
	$G_{v_l_}$	350	35	50	350										
Mean MOR in planar shear N/mm²	Gr∥	45	50	0	50					-					
	G _{r_L}	NPD	3	0				40							
Strength and stiffness under point load		NPD													
Impact resistance		NPD													
	-	kn	_{nod} and k _{de}	_f values a			1995-1-	1		·					

The performance of the product identified above is in conformity with the set of declared performances. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Lahti, Finland, January 10th, 2022

Riku Härkönen, Product Manager UPM Plywood