

DECLARATION OF CONFORMITY, UPM PLYWOOD

No. UPM012CPR

Unique identification code of the product-type:
 Structural plywood with birch face and spruce core, uncoated or coated, 5–24 mm

2. Intended uses:

For internal use as a structural component in dry conditions, EN 636-1 For protected external use as a structural component in humid conditions, EN 636-2 For external use as a structural component with coating and edge sealing, EN 636-3

3. Manufacturer:

WISA®
UPM Plywood Oy
P.O. Box 203
FI-15141 Lahti, Finland
www.wisaplywood.com

 Authorized presentative UPM Wood Material (UK) Limited Station House Stamford New Road, Altrincham WA14 1EP Cheshire United Kingdom

5. System of AVCP: AVCP system 2+

6a. Harmonised standard:

EN 13986:2004 + A1:2015

Notified body:

CATG Ltd No. 1245 has performed the initial inspection of the manufacturing plant and a factory production control and continuous surveillance, assessment and evaluation of factory production control and issued the certificate of conformity of the factory production control 1245-CPR-5003.

7. Declared performance:

Essential characteristics	Performance	Harmonised standard			
Point load strength and stiffness	NPD				
Racking resistance	Calculation according to EN 1995-1-1				
Impact resistance	NPD				
Water vapour permachility u	Wet 70, dry 200 (uncoated)				
Water vapour permeability µ	Mean density 520 kg/m ³				
Release of formaldehyde	E1				
Content of pentachlorophenol (PCP)	≤ 5 ppm				
Airborne sound insulation	NPD	EN 13986:2004+A1:2015			
Sound absorption α	0,10/0,30				
Thermal conductivity λ	0,13 W/mK				
Embedment strength	Calculation according to EN 1995-1-1				
Air permeability	NPD				
Bonding quality (acc. to EN 314-2)	Class 3				
Piological durability	Use class 2 (uncoated)				
Biological durability	Use class 3 (coated and edge sealed)				

Reaction to fire							
End use condition ⁽⁶⁾	Minimum thickness (mm)	Class ⁽⁷⁾ (excluding floorings)	Class ⁽⁸⁾ (floorings)				
Without an air gap behind the wood-based panel (1), (2), (5)	9	D-s2, d0	D _{fl} -s1				
With a closed or an open air gap not more than 22 mm behind the wood-based panel (3), (5)	9	D-s2, d2	-				
With a closed air gap behind the wood-based panel (4), (5)	15	D-s2, d1	D _{fl} -s1				
With an open air gap behind the wood-based panel (4), (5)	18	D-s2, d0	D _{fl} -s1				
Any (5)	5	E	Efl				

⁽¹⁾ Mounted without an air gap directly against class A1 or A2-s1, d0 products with minimum density 10kg/m3 or at least class D-s2, d2.
(2) A substrate of cellulose insulation material of at least class E may be included if mounted directly against the wood-based panel, but not for floorings.

⁽³⁾ Mounted with an air gap behind. The reverse face of the cavity shall be at least class A2-s1, d0 products with minimum density 10 kg/m3.

⁽a) Mounted with an air gap behind. The reverse face of the cavity shall be at least class Az-s1, do products with minimum density 10 kg/m3.
(b) Veneered, phenol- and melamine-faced panels are included for class excl. floorings.
(c) A vapour barrier with a thickness up to 0,4 mm and a mass up to 200 g/m2 can be mounted in between the wood-based panel and a substrate if there are no air gaps in between.
(c) Class as provided for in Table 1 of the Annex to Decision 2000/147/EC.

⁽⁸⁾ Class as provided for in Table 2 of the Annex to Decision 2000/147/EC.

Nominal thickness		5	9	12	15	18	21	24	
Number of plies		3	5	5	6/7	7	8/9	8	
Essential characteristics		Performance							
Characteristic bending strength N/mm²	f _m	50,5	34,7	26,5	25,9	25,0	24,4	23,1	1
	f _{m_l_}	8,8	16,1	19,1	17,4	18,4	17,0	18,3	
Characteristic compression strength N/mm²	f _c	23,8	20,5	15,7	16,6	15,8	13,5	13,1	5
	f _{c_l_}	16,3	12,8	16,3	12,8	15,8	15,3	18,2	
Characteristic tension strength N/mm²	f _t	34,4	12,3	9,4	10,0	9,5	8,1	7,9	
	f _{t_}	9,8	7,7	8,6	9,2	9,5	9,2	9,9	Harmonised standard EN 13986:2004+A1:2015
Mean MOE in bending N/mm²	E _m	14719	10109	7721	7558	7306	7108	6744	1+A1
	E _{m_L}	1907	4919	6222	5946	6457	6062	6645	2007
Mean MOE in compression and tension N/mm²	E _{t,c}	8021	8181	6285	6638	6335	5388	5248	:986:
	E _{t,c_l_}	6500	5106	6508	5120	6330	6118	7261	N 13
Char. panel shear N/mm²	f _v	3,5	3,5	3,5	3,5	3,5	3,5	3,5	Ird E
	$f_{v_\!\!\!\perp\!\!\!\!\perp}$	3,5	3,5	3,5	3,5	3,5	3,5	3,5	anda
Char. Planar shear N/mm²	f _r	1,1	1,3	1,0	1,3	0,9	0,9	0,7	ed st
	$f_{r_l_}$	NPD	0,8	0,6	0,9	0,9	1,0	0,8	onise
Mean MOR in panel shear N/mm²	G _{v II}	350	350	350	350	350	350	350	armo
	$G_{v_\!\!\!\!\perp}$	350	350	350	350	350	350	350	I
Mean MOR in planar shear N/mm²	$G_{r\parallel}$	35	49	49	70	51	40	40	
	G _{r_l_}	NPD	40	38	31	45	46	65	
Strength and stiffness under point load	NPD								
Impact resistance	NPD								
		k _{ma}	_d and k _{def} va	lues accordi	ng to EN 199	5-1-1			•

The performance of the product identified above is in conformity with the set of declared performances. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Lahti, Finland, January 10th, 2022

Riku Härkönen, Product Manager UPM Plywood